Xiaoping Zhang (张晓平)

Ph.D., Associate Professor

Rm 316, Northwest Building,
School of Mathematics and Statistics,
Wuhan University,
Wuhan, China.

Email: xpzhang.math at whu dot edu dot cn


Biography [CV ]

My research interests include Numerical Solution of PDEs and Nonlocal Problems, like finite volume method, collocation method and so on. Currently, I am also interested in Deep Learning on Computer Vision and some fields related to PDEs.

Publications

Journal Papers

  1. C. Zhang, H. Li, X. Zhang, L. Ju, Linear and Unconditionally Energy Stable Schemes for the Multi-Component Two-Phase Diffuse Interface Model with Peng-Robinson Equation of State, Communication in Computational Physics, 26 (2019), 1071-1097. [ pdf ]

  2. T. Zhao, Y. Zhu, M. Ye, M. Wei, X. Zhang, J. Yang, J. WU, Machine-Learning Methods for Water Table Depth Prediction in Seasonal Freezing-Thawing Areas, Ground Water, DOI: 10.1111/gwat.12913, May 2019 [ pdf ]

  3. H. Feng, Y. Gao, L. Ju, X. Zhang A new collocation method for solving certain Hadamard finite-part integral equation, International Journal of Numerical Analysis and Modeling, 16 (2018), 240–254. [ pdf ]

  4. Y. Gao, H. Feng, H. Tian, L. Ju, X. Zhang, Nodal-Type Newton-Cotes Rules for Fractional Hypersingular Integrals, East Asian Journal on Applied Mathematics, 8 (2018), 697-714. [ pdf ]

  5. X. Zhang, J. Wu, L. Ju, An accurate and asymptotically compatible collocation scheme for nonlocal diffusion problems , Applied Numerical Mathematics, 133 (2018), 52-68. [ pdf ]

  6. J. Zhang, Y. Zhu, X. Zhang, M. Ye, J. Yang, Developing a Long Short-Term Memory (LSTM) based Model for Predicting Water Table Depth in Agricultural Areas, Journal of Hydrology, 561 (2018), 918-929. [pdf]

  7. X. Zhang , S. Su, J. Wu, A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids, J. Comput. Phys., 344 (2017), 419-436. [pdf]

  8. D. Liu, J. Wu, X. Zhang, The adaptive composite trapezoidal rule for Hadamard finite-part integrals on an interval, J. Comput. Appl. Math., 325 (2017), 165-174. [pdf]

  9. X. Zhang , M. Gunzburger, L. Ju, Quadrature rules for finite element approximations of 1D nonlocal problems, J. Comput. Phys., 310 (2016), 213-236. [pdf]

  10. X. Zhang, M. Gunzburger, L. Ju, Nodal-type collocation methods for hypersingular integral equations and nonlocal diffusion problems, Comput. Meth. Appl. Mech. Engrg., 299 (2016), 401-420. [pdf]

  11. H. Feng, Y. Liu, X. Zhang*, L2 error estimates of collocation methods for solving certain singular integral equations, Appl. Math. Comput., 229 (2014), 396-413. [pdf]

  12. K. Du, W. Sun, X. Zhang, Arbitrary high-order C0 tensor product Galerkin finite element methods for the electromagnetic scattering from a large cavity, J. Comput. Phys., 242 (2013), 181-195. [pdf]

  13. D. Liu, X. Zhang* , J. Wu, A collocation scheme for a certain Cauchy singular integral equation based on the superconvergence analysis, Appl. Math. Comput., 219(2013), 5198-5209. [pdf]

  14. J. Li, X. Zhang , D. Yu, Extrapolation methods to compute hypersingular integral in boundary element methods, Sci. China Math., 56 (2013), 1647-1660. [pdf]

  15. W. Sun, J. Wu, X. Zhang, A family of linearity-preserving schemes for anisotropic diffusion problems on arbitrary polyhedral grids, Comput. Meth. Appl. Mech. Engrg., 267 (2013), 418-433. [pdf]

  16. H. Feng, X. Zhang*, J. Li, Numerical solution of a certain hypersingular integral equation of the first kind, BIT, 51(2011), 609-630. [pdf]

  17. J. Li, X. Zhang*, D. Yu, Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals, J. Comput. Appl. Math., 233 (2010), 2841-2854. [pdf]

  18. J. Wu, X. Zhang*, D. Liu, An efficient calculation of the Clausen functions Cln(θ), BIT, 50 (2010), 193-206. [pdf]

  19. J. Wu, Z. Dai, X. Zhang, The superconvergence of the composite midpoint rule for the finite-part integral, J. Comput. Appl. Math., 233 (2010), 1954-1968. [pdf]

  20. X. Zhang*, J. Wu, D. Yu, The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application, Int. J. Comput. Math., 87 (2010), 855-876. [pdf]

  21. X. Zhang*, J. Wu, D. Yu, The superconvergence of composite Newton-Cotes rules for Hadamard finite-part integral on a circle, Computing, 85 (2009), 219-244. [pdf]

  22. X. Zhang*, J. Wu, D. Yu, Superconvergence of the composite Simpson’s rule for a certain finite-part integral and its applications, J. Comput. Appl. Math., 223(2009), 598-613. [pdf]

  23. W. Sun, J. Wu, X. Zhang, Nonconforming spline collocation methods in irregular domains, Numer. Meth. PDE, 23(2007), 1509-1529. [pdf]

Conference Proceedings

  1. Z. Wu, X. Wu, X. Zhang, S. Wang, L. Ju. Spatial Correspondence with Generative Adversarial Network: Learning Depth from Monocular Videos, to appear in IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 2019.

  2. Z. Wu, X. Wu, X. Zhang, S. Wang, L. Ju. Semantic Stereo Matching with Pyramid Cost Volumes, to appear in IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 2019.

Research Grants

  1. National Science Foundation of China, 11771364, CO-PI, 2018-2021, ¥ 100,000
  2. National Science Foundation of China, 11671313, PI, 2017-2020, ¥ 480,000
  3. National Science Foundation of China, 11101317, PI, 2012-2014, ¥ 220,000
  4. National Science Foundation of China, 11026170, PI, 2011-2011, ¥ 30,000

Teaching

数据结构与算法-Python (2019秋季)

内容 课件 作业
Python基础 [ Slide ] [ Lecture ] [ Assignment ]
面向对象编程 [ Slide ] [ Lecture ] [ Assignment ]
算法分析 [ Slide ] [ Lecture ] [ Assignment ]
递归 [ Slide ] [ Lecture ] [ Assignment(已布置) ]
Array Based Sequence [ Slide ] [ Lecture ] [ Assignment ]
栈、队列与双端队列 [ Slide ] [ Lecture ] [ Assignment ]
链表 [ Slide ] [ Lecture ] [ Assignment ]
[ Slide ] [ Lecture ] [ Assignment ]
[ Slide ] [ Lecture ] [ Assignment ]

数值计算方法 (2019秋季)

内容 课件 作业
绪论 [ Slide ]
线性方程组的直接解法 [ Slide ] [ Assignment(已布置) ]
线性方程组的迭代解法 [ Slide ] [ Assignment(已布置) ]
非线性方程的数值解法 [ Slide ] [ Assignment(已布置) ]
插值 [ Slide ] [ Assignment(已布置) ]
曲线拟合 [ Slide ] [ Assignment ]
数值积分 [ Slide ] [ Assignment ]
常微分方程的数值解法 [ Slide ] [ Assignment ]